Τρίτη, Φεβρουαρίου 26

Σελίδα 123 από τελεία σε τελεία...



Τον τελευταίο καιρό χάθηκα από το προσκήνιο της γειτονιάς μας, γιατί δούλευα ακατάπαυστα πάνω σε μία εργασία. Μέρος από αυτήν την εργασία θα ανακοινωθεί σε κάποια συνέδρια και έπρεπε να τρέξω γρήγορα για να προλάβω τις ημερομηνίες υποβολής των εργασιών. Μπάχαλο σκέτο. Λοιπόν δεν υπάρχει μεγαλύτερη κατάρα από το να πρέπει να γράφεις επιστημονική εργασία. Ούτε στον εχθρό μου...


Αρκετά με αυτά.


Μετά από πρόσκληση της ceralex, έδωσα το λόγο μου και έτσι συμμετέχω στο παιχνίδι "page 123 book meme".


Τους νόμους του παιχνιδιού ψάξτε να τους βρείτε στο πολύ πολύ ωραίο blog της ceralex το οποίο το παρακολουθώ συχνά και σιωπηλά. Εδώ δε θα βρείτε κανόνες ! Γιατί πολύ απλά δε θα τους εφαρμόσω όπως είναι. Βλέπετε, το πιο κοντινό μου βιβλίο στη σελίδα 123 μιλάει για "complexity of models" και νομίζω ότι δε θα ενδιαφέρει κανέναν αυτό. Γι αυτό άλλαξα αυτό τον προβληματικό κανόνα και τον έκανα πιο ωραίο : Σκέφτηκα να πάω στη βιβλιοθήκη μου και να ψάξω για το βιβλίο με τις περισσότερες ενδιαφέρουσες σελίδες ή καλύτερα τις περισσότερες ενδιαφέρουσες προτάσεις. Έτσι η πιθανότητα να βρω κάτι ωραίο να γράψω διαβάζοντας τη σελίδα αυτή θα είναι αυξημένη. Πριν καλά καλά σκεφτώ τον κανόνα είχα ήδη αποφασίσει για το βιβλίο. Και χαίρομαι που δεν έκανα λάθος :


"Η ζωή δεν έχει κανένα σκοπό εκτός από το να προχωρεί, καμιά αρχή εκτός από την έντιμη ανταλλαγή, καμιά ικανοποιήση εκτός από την κατανάλωση. Τι έννοια μπορεί να έχει η αντίληψη του θεού κάτω από τις συνθήκες αυτές; Η αρχική θρησκευτική θρησκευτική έννοια μετατρέπεται σε μία άλλη που να ταιριάζειστον αλλοτριωμένο πολιτισμό της ευτυχίας."


Σχόλιον ουδέν... Όποιος δεν έχει διαβάσει Fromm τότε πραγματικά δεν ξέρει που παν τα τέσσερα. Δε θέλω λοιπόν σχόλια. Χωρίς να θέλω να προσβάλω κανέναν, όποιος θα έκανε σχόλιο θα μου θύμιζε μεσημεριανή εκπομπή. Όταν μιλάνε τέτοιοι άνθρωποι μπορούμε μόνο να ακούμε.


Προσκλήσεις σε άλλους ουδένες...Ο Fromm τα είπε όλα.
Μα τι καλός άνθρωπος που είμαι....

Δευτέρα, Φεβρουαρίου 11

Χάος (Ποιος, Πού, Πότε, Γιατί)

Όλα ξεκίνησαν όταν το 1889, ο Βασιλιάς Όσκαρ ο Β' της Σουηδίας και της Νορβηγίας θέλοντας να γιορτάσει τα 60α γενέθλιά του με ένα πιο εξαντρίκ τρόπο. Διακύρηξε ένα διαγωνισμό: "Στην καλύτερη ερευνητική εργασία σχετικά με την ευστάθεια του πλανητικού μας συστήματος." Ο Βασιλιάς δηλαδή ρώτησε ποιος μπορεί να του απαντήσει αν ποτέ το πλανητικό μας σύστημα συντριβεί ή παραμείνει για πάντα σε ισορροπία.

Το μαθηματικό μοντέλο έχει να κάνει με την κίνηση n σωμάτων (εδώ των πλανητών) κάτω από την βαρυτική έλξη που ασκεί ο ένας στον άλλο. Στόχος είναι να βρεθούν οι εξισώσεις που θα δίνουν κάθε στιγμη τη θέση και ταχύτητα των πλανητών. Το ηλιακό μας σύστημα έχει n = 9 βασικούς πλανήτες. Το μαθηματικό πρόβλημα (δηλαδή χωρίς τη βοήθεια υπολογιστών) δεν έχει λύση για n μεγαλύτερο ή ίσο του 3!

Παρ' όλα αυτά νικητής υπήρξε, και ήταν ένας πολύ μεγάλος μαθηματικός: Ο Henry Poincare, καθηγητής στο πανεπιστήμιο του Παρισιού, ο οποίος έκανε τεράστια πρόοδο στο πρόβλημα, αν και δεν κατάφερε να το λύσει. Μελετώντας ένα πολύ απλό μοντέλο που αποτελούνταν από μόλις 3 σώματα (μόνο ένα από τα οποία είχε επιτρέψει να κινείται), ανακάλυψε ένα νέο είδος κίνησης: Το κινητό σώμα διέγραφε μια απίστευτα πολύπλοκη πορεία. Δε σταματούσε ποτέ, δεν κατέληγε σε καμία περιοχή του χώρου αλλά δεν ξέφευγε ποτέ μακριά από τα άλλα δύο σώματα.



Η "τρελή" συμπεριφορά του συστήματος αυτού, εντυπωσίασε τους πάντες όχι μόνο για το πόσο μπερδεμένη εμφανιζόταν αλλά κυρίως από το γεγονός ότι προέκυπτε από ένα τόσο απλό σύστημα. Δείτε πόσο απλό σύστημα είναι : πηγαίνετε ΕΔΩ και πατήστε το play για να δείτε την τροχιά του μικρού πλανήτη και να καταλάβετε ακριβώς τι θέλω να πω.

Αυτή η συμπεριφορά θα ορισθεί τη δεκαετία του '70 (του 1970) ως Χάος.

Πως όμως προκύπτει αυτή η συπεριφορά; Τι κάνει το μικρό πλανήτη να μη σταματάει ποτέ; Τι εννοούμε όταν μιλάμε για πολυπλοκότητα;

Όταν ήμαστε μικροί, σχεδόν όλοι από μας προσπαθήσαμε κάποια στιγμή να κρατήσουμε όρθιο στην παλάμη μας ένα καλαμάκι ή ένα μολύβι ή ενα μακρύ κοντάρι που βρήκαμε πεταμένο στον κήπο της γιαγιάς. Με πολύ πολύ εξάσκηση θα καταφέρουμε αρχικά να κρατήσουμε το κοντάρι περισσότερη ώρα όρθιο πριν μας πέσει για άλλη μια φορά στο κεφάλι. Έχουμε, απλά, παρατηρήσει ότι πρέπει να υπάρχει ένα σημείο όπου το κοντάρι θα ισορροπήσει και αν είμαστε τυχεροί θα το πετύχουμε σε κάποια προσπάθεια. Σε πείσμα όλων εμείς θα συνεχίσουμε να προσπαθούμε αλλά εν γένει θα καταλήξουμε με πολλά πολλά καρούμπαραλα και ξύλο από τη γιαγιά. Διότι ως μπόμπιρες κώλο κάτω δε βάζουμε και φυσικά ΔΕ μας αρέσουν τα επιτραπέζια!!!!!

Γρήγορα, γρήγορα θα γίνουμε πιο τολμηροί και θα περπατήσουμε πάνω σε τεντωμένο σκοινί, ή θα γίνουμε ζογκλέρ σε τσίρκο των αρχών του περασμένου αιώνα, ψάχνωντας για αυτή τη ριμάδα την ισορροπία, που υπάρχει αλλά είναι ασταθής. Λίγο πιο αριστερά ή λίγο πιο δεξιά, λίγο αέρας να φυσήξει, πάει η ισορροπία, τη χάσαμε!!!! Αυτό που συμβαίνει στην πραγματικότητα είναι πως όσο και να προσπαθήσουμε, όσο κοντά και να φτάσουμε σε αυτό το χρυσό σημείο, ποτέ δε θα καταφέρουμε να κάτσουμε ακριβώς πάνω του. Αποτέλεσμα είναι πως, αν μείνουμε ακίνητοι, ποτέ δε θα νιώσουμε αυτή την ασταθή ισόρροπία.


Στη θεωρία δυναμικών συστημάτων αν ένα σύστημα (όπως αυτό με το κοντάρι και το χέρι μας) ξεκινήσει ακριβώς πάνω σε ένα σημείο ισορροπίας θα παραμείνει για πάντα εκεί. Από όποιο άλλο σημείο και να ξεκινήσει- όσο κοντά στο σημείο ισορροπίας βρίσκετα αυτό, πολύ σύντομα θα απομακρυνθεί από εκεί (όχι δε θα φάμε ξύλο γι αυτό). Τέτοια σημεία παρουσιάζουν ευαίσθητη εξάρτηση από τις αρχικές συνθήκες. Ο ορισμός αν τον έλεγα έτσι από μόνο του θα μπέρδευε τους πάντες. Τώρα νομίζω ότι δεν έχω να πω περισσότερα.

Μπορούμε να το δούμε και αλλιώς. Μπείτε στη θέση αυτού του σημείου. Γευτείτε αυτήν την απολυτη και αέναη ισορροπία, όταν γύρω σας κυριαρχεί η αστάθεια. Βρεθείτε στην κορυφή του Εverest (αυτού στην Ομόνοια)! Θα θέλατε κάποιον άλλο παρέα; ΟΧΙ ΦΥΣΙΚΑ!!! Όποιος άλλος θα βρεθεί κοντά σας θα τον διώξετε, και δίκιο θα έχετε. Η επόμενη ερώτηση είναι το πόσο γρήγορα θα πέσει το κοντάρι στο κεφάλι μας; Όσο πιο κοντά θα ξεκινήσουμε από το σημείο-φάντασμα τόσο πιο πολύ θα αργήσει. Η ταχύτητα όμως παραμένει η ίδια και σταθερή.
Αν είμαστε καλά παιδιά και προσέχουμε τη μόστρα μας και δε θέλουμε να αποκτήσουμε κανένα καρούμπαλο θα αντιστρέψουμε το κοντάρι και θα το κρεμάσουμε προς τα κάτω. Αυτό θα σταθεροποιηθεί κατακόρυφα και η άκρη του θα ηρεμήσει σε ένα άλλο σημείο ισορροπίας. Αν το κουνήσουμε λίγο το κοντάρι αυτό μετά από λίγο θα επιστρέψει στην ηρεημία του ίδιου σημείου. Σε αντίθεση με τα ασταθή σημεία υπάρχουν και τα ευσταθή σημεία ισορροπίας, τα οποία, αντί να απωθούν, έλκουν τα γειτονικά σημεία.


Τι σχέση έχουν όλα αυτά με το Χάος ;

Μία χαοτική τροχιά είναι παγιδευμένη ανάμεσα σε ασταθή σημεία ισορροπίας. Εκτελεί μια καταραμένη πορεία. Όπου σταθεί κι όπου βρεθεί υπάρχει κοντά της ένα ασταθές σημείο ισορροπίας (μια κορυφή του Everest) που τη διώχνει μακριά. Πόσα είναι αυτά τα σημεία που τη διώχνουν μακριά; Πολλά, πάρα πολλά, άπειρα! Ταυτόχρονα είναι και μια εγκλωβισμένη τροχιά. Θα ταξιδεύει για πάντα σε αυτό το αφιλόξενο περιβάλλον (όπως η ο μικρός πλανήτης στο σύστημα των τριών σωμάτων) χωρίς ελπίδα να καταλαγιάσει κάπου ή να ξεφύγει μακριά από αυτην την ιδιότυπη κόλαση.

Πάμε για μία 2η ιστορία....


Η μελέτη του Poincare ξεχάστηκε σχετικά γρήγορα. Το 1905 ο Albert Einstein δημοσιεύει την περίφημη εργασία του για την Ειδική Θεωρία της Σχετικότητας, δέκα χρόνια μετά τη Θεωρία της Γενικής Σχετικότητας, ενώ κατά τη δεκαετία του '20 και του '30 έχουμε την ανάπτυξη της Κβαντομηχανικής θεωρίας. Όλα αυτά επισκίασαν το έργο του Poincare ή στην καλύτερη περίπτωση έστρεψαν αλλού το επιστημονικό ενδιαφέρον. Μετά ήρθε και ο 2ος Παγκόσμιος Πόλεμος...βάλε και κατάλαβε!!!


Φτάσαμε αισίως, λοιπόν, στα τέλη της δεκαετίας του '50. Στο πανεπιστήμιο του M.I.T. συμβαίνει κάτι το σκανδαλώδες. Ένας καθηγητής μετερεωλογίας ονόματι Edward Lorenz παραλαμβάνει (για λογαριασμό του και μόνον) έναν ολόκληρο υπολογιστή. Έναν Royal McBee LGP-30 αξίας $45.000: Ένα πανάκριβο μηχάνημα μεγάλο όσο ένα ψυγείο και με τα εξωφρενικά, για την εποχή, τεχνικά χαρακτηριστικά της μνήμης 16000 Bytes και των 120000 κύκλων ρολογιού. (Ο υπολογιστής που σας γράφω εχει 1000000000 Bytes μνήμη και 4200000000 κύκλους (Hz)).




Σε αυτό το μηχάνημα λοιπόν, που έκανε μόλις 60 πολλαπλασιασμούς το δευτερόλεπτο, άρχισε να δουλέυει ένα μαθηματικό μοντέλο για τη μελέτη του καιρού. Πάτησε τα πλήκτρα και το άφησε να παράγει αριθμούς (δηλαδή τη θέση του συστήματος κάθε στιγμή) ενώ εκείνος πήγε να πάρει καφέ. Όταν γύρισε με τη φραπεδιά στο χέρι, παρατήρησε ότι το μηχάνημα παρήγαγε αριθμούς που δεν κατέληγαν κάπου συγκεκριμένα. Δεν σταθεροποιούνταν σε μια τιμή ούτε γύρω από δύο ή τρεις τιμές. Ο υπολογιστής παρήγαγε ασταμάτητα αριθμούς που δεν ήταν ίδιοι μεταξύ τους και δεν επαναλαμβάνονταν.... Αρχικά σκέφτηκε μήπως του πουλήσανε μούφα υπολογιστή. Μετά έβαλε τους αριθμούς στη σειρά και είδε κάτι τέτοιο:

Αυτός είναι ένας παράξενος ελκυστής. Παράξενος γιατί δεν τον συναντάτε και κάθε μέρα και ελκυστής γιατί εκεί φαίνεται πως καταλήγει μια χαοτική τροχιά: σε κάτι πολυ πολύπλοκο και παράξενο. Δειτε ΕΔΩ μία τυπική χαοτική τροχιά του συστήματος που μελέτησε ο Lorenz. Η σχέση τη τροχιάς που είδατε στην αρχή με αυτή που είδατε τώρα είναι του ότι και οι δύο τροχιές είναι ευαίσθητες στις αρχικές συνθήκες, όπως είδαμε παραπάνω.

ΜΑ ΤΙ ΤΟ ΦΟΒΕΡΟ ΕΧΕΙ ΑΥΤΗ Η ΣΥΜΠΕΡΙΦΟΡΑ ΠΟΥ ΜΑΣ ΕΧΕΙΣ ΠΑΡΕΙ ΤΑ ΑΥΤΙΑ!!!???!!!

Δύο εντυπωσιακά χαρακτηριστικά. Θα κλείσω αυτό το μάθημα με το πρώτο χαρακτηριστικό: Σκεφτείτε ένα τεράστιο φλιπεράκι. Πολύ τεράστιο. Μα Πάρα πολύ τεράστιο. Με πολλά αυτάκια που διώχνουν τη μπίλια. Πάρα πολλά. Για να είμαστε ακριβείς άπειρα. Αυτά τα αυτάκια αντιστοιχούν στις κορυφές που "διώχνουν" τους διπλανούς τους. Έτσι και τα αυτάκια διώχνουν μακρια τη μπίλια. (Το να καταφέρει ποτέ η μπίλια να κάτσει ακριβώς πάνω σε ένα αυτάκι ώστε να μη φύγει ποτέ είναι όσο πιθανό να πιάσουμε την ασταθή ισορροπία που αναφέραμε παραπάνω, καθόλου!).


Ξεκινάμε από ένα σημείο με μία μπίλια και παρατηρούμε την τροχιά της. Αυτή η τροχιά είναι χαοτική. Η μπίλια δεν ηρεμεί πουθενά και όπου σταθεί κ όπου βρεθεί τα αυτάκια τη διώχνουν. Δεν ηρεμεί και δεν φεύγει έξω από το φλίπερ.
Ας βάλουμε και μία δεύτερη μπίλια. Όσο κοντά μπορούμε στην πρώτη. ΟΣΟ ΚΟΝΤΑ ΜΠΟΡΕΙΤΕ ΝΑ ΦΑΝΤΑΣΤΕΙΤΕ (το να τη βάλουμε ΑΚΡΙΒΩΣ στο ίδιο σημείο είναι όσο πιθανό να πιάσουμε την ασταθή ισορροπία, όσο πιθανό να πάρει ο Γαύρος το πρωτάθλημα στο Μπάσκετ, ΚΑΘΟΛΟΥ).

Παραδόξως (!) μετά από λίγες σφαλιάρες, οι δύο μπίλιες θα εκτελούν εντελώς άσχετες μεταξύ τους διαδρομές. Αν βάλαμε τη δεύτερη μπίλια, να παρακολουθεί την πρώτη, τότε αποτύχαμε. Η χαοτική τροχιά δεν μπορεί να προβλεφθεί για το πως θα κινηθεί και πιο μονοπάτι θα διαλέξει. Παρά το γεγονός ότι έχουμε να κάνουμε με συστήματα χωρίς ασάφειες (τα αυτάκια στο φλιπερ ειναι ακλόνητα και ξέρουμε ακριβώς πότε και πως θα κινηθούν όταν χρειαστεί) η κίνηση της μπίλιας δεν μπορεί να προβλεφθεί, ή αν αυτό γίνει τότε θα είναι για πάρα πάρα πάρα πολύ λίγο χρόνο...

Μια συμπεριφορά δηλαδή εξαιρετικά πολύπλοκη από ένα σύστημα σχετικά απλό που σίγουρα δεν το κάνει το μάτι σου ότι μπορεί να προκαλέσει τέτοιο μπαχαλο...
Στο επόμενο μάθημα....που εφαρμόζεται το χάος....;;;

Ή ώρα είναι 4.40 το πρωί και με έχετε κουράσει πολύ σήμερα...Ελπίζω να μη βαρεθήκατε (όσο εγώ :pp )



Καλημέρα...

Δευτέρα, Φεβρουαρίου 4

Χάος (Overture)

Λοιπόν...ήρθε η ώρα που όλοι περιμένατε. Θα μιλήσουμε στα επόμενα ποστ για κάτι που σε όλους αρέσει αλλά λίγοι πραγματικά το έχουν καταλάβει. Επιπλέον όσοι το έχουν καταλάβει δεν τους αρέσει και πάρα πολύ γιατί ακριβώς αρχίζουν και το καταλαβαίνουν. Αν όμως κάνουν λίγη υπομονή και συνεχίζουν να το μελετάνε τότε θα το αγαπήσουν για πάντα.


Σκοπός σε αυτά τα κείμενα δεν είναι να αναλύσω την ψυχοπαθολογία του καθενός που σκέφτεται ή όχι το Χάος, αλλά να προσπαθήσω να εξηγήσω με όσο πιο απλό τρόπο γίνεται, λίγες ιδέες μέσα από τις οποίες μπορούμε να καταλάβουμε πολλά πράγματα στη φύση και την καθημερινή μας ζωή με διαφορετικό μάτι. Είναι ένα προσωπικό στοίχημα γιατί μόνο αν το καταλάβετε εσείς σωστά τότε θα το έχω καταλάβει και εγώ. Θα κινηθώ, λοιπόν, εκ του ασφαλούς. Θα σας πάω από το μονοπάτι που ακολούθησα, άθελά μου, ο ίδιος. Έτσι μόνο θα μπείτε στο μυαλό μου και θα μπορέσουμε να επικοινωνήσουμε.

Τέλεια ! Λοιπόν ξεκινάμε...


Jurassic Park (1993)

H πρώτη αναφορά που θυμάμαι, γίνεται σε αυτην την all time classic ταινία. Εκεί ο Jeff Goldblum ζαχαρώνει συστηματικά τη Laura Dern. Στην επίμαχη σκηνή θέλωντας να κάνει τον έξυπνο πιάνει δύο σταγόνες νερό, τις βάζει πάνω στο χέρι του, τη μία δίπλα στην άλλη. Έπειτα τις αφήνει να γλιστρίσουν στο χέρι του τη μία μετά την άλλη. Αυτές αν και έχουν ξεκινήσει πολύ κοντά η μία στην άλλη ακολουθούν, εν γένει, εντελώς διαφορετικές πορίες, Με βλέμμα λάγνο, εξηγεί έτσι στη Laura πως ένα τόσο απλό και μικρό σύστημα, όπως η σταγόνα που τσουρλάει, μπορεί να συμπεριφερθεί πολύ απρόβλεπτα. δεν καταφέρνει να ρίξει τη γκόμενα αλλά τουλάχιστον δεν τον έφαγαν οι δεινόσαυροι....

Όχι ότι κατάλαβα και πολλά όταν το πρωτοείδα. Στο ντούκου το πέρασα, και γιατί ήταν πολύ δύσκολο αλλά και γιατί ήμουνα μπόμπιρας και είχα πληρώσει εισητήριο για να δω ΔΕΙΝΟΣΑΥΡΟΥΣ και όχι έναν εξυπνάκια να ζαχαρώνει τη μυτόνγκα με στάλες νερού. Πολύ αργότερα αντελήφθειν τι έλεγε αλλά και πόσο σημαντικές τελικά είναι οι σταγόνες νερού ( αχ αυτό το πεπρωμένο...)

Singles 2 1/2



Η δεύτερη αναφορά είναι πρόσφατη, πολύ πιο πρόσφατη και.... από τους Singles 2 1/2. Στο 4ο επεισόδιο του κύκλου η Αντιγόνη Mayhem, κατά κόσμο Άννα Αδριανού, έχει απαγάγει όλους τους πρωταγονιστές της σειράς στο ιδιόκτητό της τραίνο και προσπαθεί να βρεί τον πραγματικό υπεύθυνο για το θάνατο του γιού της Δημήτρη. Ο κάθένας όμως από τους πρωταγωνιστές έχει συμβάλει με τρόπο ασήμαντο αλλά και καθοριστικό στο θάνατο του Δημήτρη. Ο πραγματικός υπαίτιος δεν μπορεί να καθοριστεί αφού ο θάνατος του Δημήτρη είναι ένα "σημαντικό και απρόβλεπτο" αποτέλεσμα πολλών "τυχαίων και άσχετων μεταξύ τους" αιτιών. Όσοι δε θυμάστε το επεισόδιο βρείτε το από το http://www.greektube.org/. Όσοι δε βλέπετε Singles, έχετε σημαντικά κενά στη διδακτέα ύλη και δεν αξίζετε να είστε αναγνώστες μου!


Με αυτά τα δύο απλά και όμορφα παραδείγματα κάναμε ένα πρώτο αλλά σημαντικό βήμα στην κατανόηση μιας καταπληκτικής θεωρίας....Στο επόμενο μάθημα θα μιλήσουμε για πεταλούδες, για μπαρμπούτι και για...ακράτεια....


Να περνάτε όλοι καλά...(και να διαβάζετε !)